Computational Insights into the Role of Cholesterol in Inverted Hexagonal Phase Stabilization and Endosomal Drug Release

Cholesterol is a major component of many lipid-based drug delivery systems, including cationic lipid nanoparticles. Despite its critical role in the drug release stage, the underlying molecular mechanism by which cholesterol assists in endosomal escape remains unclear. An efficient drug release from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 24 vom: 21. Juni, Seite 7462-7471
1. Verfasser: Ramezanpour, Mohsen (VerfasserIn)
Weitere Verfasser: Tieleman, D Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cations Lipid Nanoparticles Liposomes Phosphatidylethanolamines Water 059QF0KO0R Cholesterol 97C5T2UQ7J
LEADER 01000caa a22002652c 4500
001 NLM341972940
003 DE-627
005 20250303105633.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.2c00430  |2 doi 
028 5 2 |a pubmed25n1139.xml 
035 |a (DE-627)NLM341972940 
035 |a (NLM)35675506 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ramezanpour, Mohsen  |e verfasserin  |4 aut 
245 1 0 |a Computational Insights into the Role of Cholesterol in Inverted Hexagonal Phase Stabilization and Endosomal Drug Release 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.06.2022 
500 |a Date Revised 10.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Cholesterol is a major component of many lipid-based drug delivery systems, including cationic lipid nanoparticles. Despite its critical role in the drug release stage, the underlying molecular mechanism by which cholesterol assists in endosomal escape remains unclear. An efficient drug release from the endosome requires endosomal disruption. This disruption is believed to involve a lamellar-to-inverted hexagonal (Lα-HII) phase transition upon fusion of the lipid nanoparticle with the endosomal membrane. We used molecular dynamics simulations to study the structural properties of HII systems composed of an anionic lipid distearoyl phosphatidylserine (DSPS), an ionizable cationic lipid (KC2H), and cholesterol for several hydration levels and molar ratios. This system corresponds to the lipid mixtures in the hypothesized HII structure formed upon fusion and is of interest for the rational design of ionizable cationic lipids, including KC2, for an optimal drug release. Simulations suggest a geometry- and symmetry-driven lipid sorting and cholesterol-DSPS co-location around the water cores. Cholesterol preferentially co-locates with negatively charged saturated DSPS lipids at interstitial angles. The observed cholesterol-DSPS co-location results in an overall increase in the DSPS acyl chains' order parameters, which we propose to assist in stabilizing the HII phase by stretching the DSPS acyl chains for filling the voids formed by three adjacent lipid tubules. Furthermore, a systematic increase in the cholesterol concentration increased the lattice plane spacing and the water core radius but decreased the undulations along the lipid tubule axis. We propose that cholesterol and the degree of saturation/polyunsaturation of the lipid acyl chains, and not the lipid charge, are the main contributors in facilitating the Lα-HII phase transition and stabilizing/destabilizing the formed HII phase, whereas the positive charge of the ionizable cationic lipid promotes the LNP-endosomal membrane adhesion and assists in initiating the fusion process at the local contact area. We also propose that the effect of cholesterol on the HII structure and curvature is the main underlying reason for the well-documented HII stabilization and destabilization at low and high molar concentrations of cholesterol, respectively 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Cations  |2 NLM 
650 7 |a Lipid Nanoparticles  |2 NLM 
650 7 |a Liposomes  |2 NLM 
650 7 |a Phosphatidylethanolamines  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Cholesterol  |2 NLM 
650 7 |a 97C5T2UQ7J  |2 NLM 
700 1 |a Tieleman, D Peter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 38(2022), 24 vom: 21. Juni, Seite 7462-7471  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:38  |g year:2022  |g number:24  |g day:21  |g month:06  |g pages:7462-7471 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.2c00430  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 24  |b 21  |c 06  |h 7462-7471