Cluster-Guided Asymmetric Contrastive Learning for Unsupervised Person Re-Identification

Unsupervised person re-identification (Re-ID) aims to match pedestrian images from different camera views in an unsupervised setting. Existing methods for unsupervised person Re-ID are usually built upon the pseudo labels from clustering. However, the result of clustering depends heavily on the qual...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 3606-3617
Auteur principal: Li, Mingkun (Auteur)
Autres auteurs: Li, Chun-Guang, Guo, Jun
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article