The Role of Long-Alkyl-Group Spacers in Glycolated Copolymers for High-Performance Organic Electrochemical Transistors

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 27 vom: 26. Juli, Seite e2202574
Auteur principal: Tan, Ellasia (Auteur)
Autres auteurs: Kim, Jingwan, Stewart, Katherine, Pitsalidis, Charalampos, Kwon, Sooncheol, Siemons, Nicholas, Kim, Jehan, Jiang, Yifei, Frost, Jarvist M, Pearce, Drew, Tyrrell, James E, Nelson, Jenny, Owens, Roisin M, Kim, Yun-Hi, Kim, Ji-Seon
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article accumulation mode amphipathic sidechains conjugated polymers long-alkyl-group spacers organic electrochemical transistors
Description
Résumé:© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Semiconducting polymers with oligoethylene glycol (OEG) sidechains have attracted strong research interest for organic electrochemical transistor (OECT) applications. However, key molecular design rules for high-performance OECTs via efficient mixed electronic/ionic charge transport are still unclear. In this work, new glycolated copolymers (gDPP-TTT and gDPP-TTVTT) with diketopyrrolopyrrole (DPP) acceptor and thiophene (T) and vinylene (V) thiophene-based donor units are synthesized and characterized for accumulation mode OECTs, where a long-alkyl-group (C12 ) attached to the DPP unit acts as a spacer distancing the OEG groups from the polymer backbone. gDPP-TTVTT shows the highest OECT transconductance (61.9 S cm-1 ) and high operational stability, compared to gDPP-TTT and their alkylated counterparts. Surprisingly, gDPP-TTVTT also shows high electronic charge mobility in a field-effect transistor, suggesting efficient ion injection/diffusion without hindering its efficient electronic charge transport. The elongated donor unit (TTVTT) facilitates hole polaron formation to be more localized to the donor unit, leading to faster and easier polaron formation with less impact on polymer structure during OECT operation, as opposed to the TTT unit. This is supported by molecular dynamics simulation. These simultaneously high electronic and ionic charge-transport properties are achieved due to the long-alkyl-group spacer in amphipathic sidechains, providing an important molecular design rule for glycolated copolymers
Description:Date Revised 07.07.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202202574