Self-Supervised Latent Space Optimization With Nebula Variational Coding
Deep learning approaches process data in a layer-by-layer way with intermediate (or latent) features. We aim at designing a general solution to optimize the latent manifolds to improve the performance on classification, segmentation, completion and/or reconstruction through probabilistic models. Thi...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 22. März, Seite 1397-1411 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |