Self-Supervised Latent Space Optimization With Nebula Variational Coding

Deep learning approaches process data in a layer-by-layer way with intermediate (or latent) features. We aim at designing a general solution to optimize the latent manifolds to improve the performance on classification, segmentation, completion and/or reconstruction through probabilistic models. Thi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 22. März, Seite 1397-1411
Auteur principal: Wang, Yida (Auteur)
Autres auteurs: Tan, David Joseph, Navab, Nassir, Tombari, Federico
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article