Reversible Manipulation of Photoconductivity Caused by Surface Oxygen Vacancies in Perovskite Stannates with Ultraviolet Light

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 5 vom: 20. Feb., Seite e2107650
1. Verfasser: Lee, Yujeong (VerfasserIn)
Weitere Verfasser: Yoon, Daseob, Yu, Sangbae, Sim, Hyeji, Park, Yunkyu, Nam, Yeon-Seo, Kim, Ki-Jeong, Choi, Si-Young, Kang, Youngho, Son, Junwoo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article oxide semiconductors oxygen vacancies perovskites photoconductivity photolysis
LEADER 01000naa a22002652 4500
001 NLM333208048
003 DE-627
005 20231225221159.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202107650  |2 doi 
028 5 2 |a pubmed24n1110.xml 
035 |a (DE-627)NLM333208048 
035 |a (NLM)34783077 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Yujeong  |e verfasserin  |4 aut 
245 1 0 |a Reversible Manipulation of Photoconductivity Caused by Surface Oxygen Vacancies in Perovskite Stannates with Ultraviolet Light 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Programmable optoelectronic devices call for the reversible control of the photocarrier recombination process by in-gap states in oxide semiconductors. However, previous approaches to produce oxygen vacancies as a source of in-gap states in oxide semiconductors have hampered the reversible formation of oxygen vacancies and their related phenomena. Here, a new strategy to manipulate the 2D photoconductivity from perovskite stannates is demonstrated by exploiting spatially selective photochemical reaction under ultraviolet illumination at room temperature. Remarkably, the ideal trap-free photocurrent of air-illuminated BaSnO3 (≈200 pA) is reversibly switched into three orders of magnitude higher photocurrent of vacuum-illuminated BaSnO3 (≈335 nA) with persistent photoconductivity depending on ambient oxygen pressure under illumination. Multiple characterizations elucidate that ultraviolet illumination of BaSnO3  under low oxygen pressure induces surface oxygen vacancies as a result of surface photolysis combined with the low oxygen-diffusion coefficient of BaSnO3 ; the concentrated oxygen vacancies are likely to induce a two-step transition of photocurrent response by changing the characteristics of in-gap states from the shallow level to the deep level. These results suggest a novel strategy that uses light-matter interaction in a reversible and spatially confined way to manipulate functionalities related to surface defect states, for the emerging applications using newly discovered oxide semiconductors 
650 4 |a Journal Article 
650 4 |a oxide semiconductors 
650 4 |a oxygen vacancies 
650 4 |a perovskites 
650 4 |a photoconductivity 
650 4 |a photolysis 
700 1 |a Yoon, Daseob  |e verfasserin  |4 aut 
700 1 |a Yu, Sangbae  |e verfasserin  |4 aut 
700 1 |a Sim, Hyeji  |e verfasserin  |4 aut 
700 1 |a Park, Yunkyu  |e verfasserin  |4 aut 
700 1 |a Nam, Yeon-Seo  |e verfasserin  |4 aut 
700 1 |a Kim, Ki-Jeong  |e verfasserin  |4 aut 
700 1 |a Choi, Si-Young  |e verfasserin  |4 aut 
700 1 |a Kang, Youngho  |e verfasserin  |4 aut 
700 1 |a Son, Junwoo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 5 vom: 20. Feb., Seite e2107650  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:5  |g day:20  |g month:02  |g pages:e2107650 
856 4 0 |u http://dx.doi.org/10.1002/adma.202107650  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 5  |b 20  |c 02  |h e2107650