Self-Powered InP Nanowire Photodetector for Single-Photon Level Detection at Room Temperature
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 49 vom: 01. Dez., Seite e2105729 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article III-V nanowires carrier-selective contact photodetectors self-powered single-photon detection |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. Highly sensitive photodetectors with single-photon level detection are one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most of the single-photon detection technologies require external biasing at high voltages and/or cooling to low temperatures, posing great limitations for wider applications. Here, InP nanowire array photodetectors that can achieve single-photon level light detection at room temperature without an external bias are demonstrated. Top-down etched, heavily doped p-type InP nanowires and n-type aluminium-doped zinc oxide (AZO)/zinc oxide (ZnO) carrier-selective contact are used to form a radial p-n junction with a built-in electric field exceeding 3 × 105 V cm-1 at 0 V. The device exhibits broadband light sensitivity and can distinguish a single photon per pulse from the dark noise at 0 V, enabled by its design to realize near-ideal broadband absorption, extremely low dark current, and highly efficient charge carrier separation. Meanwhile, the bandwidth of the device reaches above 600 MHz with a timing jitter of 538 ps. The proposed device design provides a new pathway toward low-cost, high-sensitivity, self-powered photodetectors for numerous future applications |
---|---|
Beschreibung: | Date Revised 20.05.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202105729 |