Evaluation of a new series of pyrazole derivatives as a potent epidermal growth factor receptor inhibitory activity : QSAR modeling using quantum-chemical descriptors

© 2021 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 42(2021), 32 vom: 15. Dez., Seite 2306-2320
Auteur principal: Said, Ridha Ben (Auteur)
Autres auteurs: Hanachi, Riadh, Rahali, Seyfeddine, Alkhalifah, Mohammed A M, Alresheedi, Faisal, Tangour, Bahoueddine, Hochlaf, Majdi
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article DFT IC50 QSAR machine learning pyrazole derivatives Pyrazoles EGFR protein, human EC 2.7.10.1 ErbB Receptors
Description
Résumé:© 2021 Wiley Periodicals LLC.
Pyrazole derivatives correspond to a family of heterocycle molecules with important pharmacological and physiological applications. At present, we perform a density functional theory (DFT) calculations and a quantitative structure-activity relationship (QSAR) evaluation on a series of 1-(4,5-dihydro-1H-pyrazol-1-yl) ethan-1-one and 4,5-dihydro-1H-pyrazole-1-carbothioamide derivatives as an epidermal growth factor receptor (EGFR) inhibitory activity. We thus propose a virtual screening protocol based on a machine-learning study. This theoretical model relates the studied compounds' biological activity to their calculated physicochemical descriptors. Moreover, the linear regression function is used to validate the model via the evaluation of Q2ext and Q2cv parameters for external and internal validations, respectively. Our QSAR model shows a good correlation between observed activities IC50 and predicted ones. Our model allows us to mitigate time-consuming problems and waste chemical and biological products in the preclinical phases
Description:Date Completed 21.02.2022
Date Revised 21.02.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.26761