Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) aims to learn a classifier for the unlabeled target domain by leveraging knowledge from a labeled source domain with a different but related distribution. Many existing approaches typically learn a domain-invariant representation space by directly matching the ma...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 31., Seite 7842-7855
|
Auteur principal: |
Deng, Wanxia
(Auteur) |
Autres auteurs: |
Liao, Qing,
Zhao, Lingjun,
Guo, Deke,
Kuang, Gangyao,
Hu, Dewen,
Liu, Li |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2021
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Sujets: | Journal Article |