Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) aims to learn a classifier for the unlabeled target domain by leveraging knowledge from a labeled source domain with a different but related distribution. Many existing approaches typically learn a domain-invariant representation space by directly matching the ma...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 31., Seite 7842-7855
Auteur principal: Deng, Wanxia (Auteur)
Autres auteurs: Liao, Qing, Zhao, Lingjun, Guo, Deke, Kuang, Gangyao, Hu, Dewen, Liu, Li
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article