Tethering Cells via Enzymatic Oxidative Crosslinking Enables Mechanotransduction in Non-Cell-Adhesive Materials

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 42 vom: 05. Okt., Seite e2102660
1. Verfasser: Kamperman, Tom (VerfasserIn)
Weitere Verfasser: Henke, Sieger, Crispim, João F, Willemen, Niels G A, Dijkstra, Pieter J, Lee, Wooje, Offerhaus, Herman L, Neubauer, Martin, Smink, Alexandra M, de Vos, Paul, de Haan, Bart J, Karperien, Marcel, Shin, Su Ryon, Leijten, Jeroen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article adhesomes biomechanics cell volume inflammation lineage commitment single-cell analysis stem cell microniches Biocompatible Materials Dextrans mehr... Hydrogels Integrins Oligopeptides arginyl-glycyl-aspartic acid 78VO7F77PN Horseradish Peroxidase EC 1.11.1.- Tyramine X8ZC7V0OX3
Beschreibung
Zusammenfassung:© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Cell-matrix interactions govern cell behavior and tissue function by facilitating transduction of biomechanical cues. Engineered tissues often incorporate these interactions by employing cell-adhesive materials. However, using constitutively active cell-adhesive materials impedes control over cell fate and elicits inflammatory responses upon implantation. Here, an alternative cell-material interaction strategy that provides mechanotransducive properties via discrete inducible on-cell crosslinking (DOCKING) of materials, including those that are inherently non-cell-adhesive, is introduced. Specifically, tyramine-functionalized materials are tethered to tyrosines that are naturally present in extracellular protein domains via enzyme-mediated oxidative crosslinking. Temporal control over the stiffness of on-cell tethered 3D microniches reveals that DOCKING uniquely enables lineage programming of stem cells by targeting adhesome-related mechanotransduction pathways acting independently of cell volume changes and spreading. In short, DOCKING represents a bioinspired and cytocompatible cell-tethering strategy that offers new routes to study and engineer cell-material interactions, thereby advancing applications ranging from drug delivery, to cell-based therapy, and cultured meat
Beschreibung:Date Completed 07.02.2022
Date Revised 13.10.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102660