MCML : Combining physical constraints with experimental data for a multi-purpose meta-generalized gradient approximation

© 2021 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 42(2021), 28 vom: 30. Okt., Seite 2004-2013
Auteur principal: Brown, Kristopher (Auteur)
Autres auteurs: Maimaiti, Yasheng, Trepte, Kai, Bligaard, Thomas, Voss, Johannes
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article MCML density functional theory materials predictions meta-generalized gradient approximation surface chemistry
Description
Résumé:© 2021 Wiley Periodicals LLC.
The predictive power of density functional theory for materials properties can be improved without increasing the overall computational complexity by extending the generalized gradient approximation (GGA) for electronic exchange and correlation to density functionals depending on the electronic kinetic energy density in addition to the charge density and its gradient, resulting in a meta-GGA. Here, we propose an empirical meta-GGA model that is based both on physical constraints and on experimental and quantum chemistry reference data. The resulting optimized meta-GGA MCML yields improved surface and gas phase reaction energetics without sacrificing the accuracy of bulk property predictions of existing meta-GGA approaches
Description:Date Revised 09.09.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.26732