SlimConv : Reducing Channel Redundancy in Convolutional Neural Networks by Features Recombining
The channel redundancy of convolutional neural networks (CNNs) results in the large consumption of memories and computational resources. In this work, we design a novel Slim Convolution (SlimConv) module to boost the performance of CNNs by reducing channel redundancies. Our SlimConv consists of thre...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 6434-6445 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2021
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |