SlimConv : Reducing Channel Redundancy in Convolutional Neural Networks by Features Recombining

The channel redundancy of convolutional neural networks (CNNs) results in the large consumption of memories and computational resources. In this work, we design a novel Slim Convolution (SlimConv) module to boost the performance of CNNs by reducing channel redundancies. Our SlimConv consists of thre...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 6434-6445
Auteur principal: Qiu, Jiaxiong (Auteur)
Autres auteurs: Chen, Cai, Liu, Shuaicheng, Zhang, Heng-Yu, Zeng, Bing
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article