Comparative first principles-based molecular dynamics study of catalytic mechanism and reaction energetics of water oxidation reaction on 2D-surface

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 16 vom: 15. Juni, Seite 1138-1149
1. Verfasser: Priyadarsini, Adyasa (VerfasserIn)
Weitere Verfasser: Mallik, Bhabani S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article 2D-surface catalysis first principles molecular dynamics simulations oxygen evolution reaction water oxidation reaction
LEADER 01000caa a22002652c 4500
001 NLM324062818
003 DE-627
005 20250301104707.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26528  |2 doi 
028 5 2 |a pubmed25n1080.xml 
035 |a (DE-627)NLM324062818 
035 |a (NLM)33851446 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Priyadarsini, Adyasa  |e verfasserin  |4 aut 
245 1 0 |a Comparative first principles-based molecular dynamics study of catalytic mechanism and reaction energetics of water oxidation reaction on 2D-surface 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a The study of the water-splitting process, which can proceed in 2e- as well as 4e- pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e- transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol-1 , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system 
650 4 |a Journal Article 
650 4 |a 2D-surface 
650 4 |a catalysis 
650 4 |a first principles molecular dynamics simulations 
650 4 |a oxygen evolution reaction 
650 4 |a water oxidation reaction 
700 1 |a Mallik, Bhabani S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 16 vom: 15. Juni, Seite 1138-1149  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:42  |g year:2021  |g number:16  |g day:15  |g month:06  |g pages:1138-1149 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26528  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 16  |b 15  |c 06  |h 1138-1149