Embarrassingly Simple Binarization for Deep Single Imagery Super-Resolution Networks
Deep convolutional neural networks (DCCNs) have shown pleasing performance in single image super-resolution (SISR). To deploy them onto real devices with limited storage and computational resources, a promising solution is to binarize the network, i.e., quantize each float-point weight and activatio...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 22., Seite 3934-3945 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2021
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |