iFlowGAN : An Invertible Flow-Based Generative Adversarial Network for Unsupervised Image-to-Image Translation

We propose iFlowGAN that learns an invertible flow (a sequence of invertible mappings) via adversarial learning and exploit it to transform a source distribution into a target distribution for unsupervised image-to-image translation. Existing GAN-based generative model such as CycleGAN [1], StarGAN...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 8 vom: 15. Aug., Seite 4151-4162
Auteur principal: Dai, Longquan (Auteur)
Autres auteurs: Tang, Jinhui
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article