|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM321578880 |
003 |
DE-627 |
005 |
20231225180119.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202007741
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1071.xml
|
035 |
|
|
|a (DE-627)NLM321578880
|
035 |
|
|
|a (NLM)33599039
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Youxing
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Face-to-Face Growth of Wafer-Scale 2D Semiconducting MOF Films on Dielectric Substrates
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.04.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a The preparation of large-area 2D conductive metal-organic framework (MOF) films remains highly desirable but challenging. Here, inspired by the capillary phenomenon, a face-to-face confinement growth method to grow conductive 2D Cu2 (TCPP) (TCPP = meso-tetra(4-carboxyphenyl)porphine) MOF films on dielectric substrates is developed. Trace amounts of solutions containing low-concentration Cu2+ and TCPP are pumped cyclically into a micropore interface to produce this growth. The crystal structures are confirmed with various characterization techniques, which include high-resolution atomic force microscopy and cryogenic transmission electron microscopy (Cryo-TEM). The Cu2 (TCPP) MOF film exhibit an electrical conductivity of ≈0.007 S cm-1 , which is approximately four orders of magnitude higher than other carboxylic-acid-based MOF materials (10-6 S cm-1 ). Other wafer-scale conductive MOF films such as M3 (HHTP)2 (M = Cu, Co, and Ni; HHTP = 2,3,6,7,10,11-triphenylenehexol) can be produced utilizing this strategy and suggests this method has widescale applicability potential
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D film
|
650 |
|
4 |
|a capillary force
|
650 |
|
4 |
|a face-to-face confinement growth
|
650 |
|
4 |
|a metal-organic frameworks
|
650 |
|
4 |
|a van der Waals heterojunction
|
700 |
1 |
|
|a Wei, Yanan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Minghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Yichao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xinyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shang, Shengcong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Changsheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Wenqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jianyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yunqi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 13 vom: 19. Apr., Seite e2007741
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:13
|g day:19
|g month:04
|g pages:e2007741
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202007741
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 13
|b 19
|c 04
|h e2007741
|