A Self-Training Approach for Point-Supervised Object Detection and Counting in Crowds
In this article, we propose a novel self-training approach named Crowd-SDNet that enables a typical object detector trained only with point-level annotations (i.e., objects are labeled with points) to estimate both the center points and sizes of crowded objects. Specifically, during training, we uti...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2876-2887 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2021
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |