Image Co-Skeletonization via Co-Segmentation

Recent advances in the joint processing of a set of images have shown its advantages over individual processing. Unlike the existing works geared towards co-segmentation or co-localization, in this article, we explore a new joint processing topic: image co-skeletonization, which is defined as joint...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 2784-2797
1. Verfasser: Jerripothula, Koteswar Rao (VerfasserIn)
Weitere Verfasser: Cai, Jianfei, Lu, Jiangbo, Yuan, Junsong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM320849244
003 DE-627
005 20231225174525.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3054464  |2 doi 
028 5 2 |a pubmed24n1069.xml 
035 |a (DE-627)NLM320849244 
035 |a (NLM)33523810 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jerripothula, Koteswar Rao  |e verfasserin  |4 aut 
245 1 0 |a Image Co-Skeletonization via Co-Segmentation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.02.2021 
500 |a Date Revised 17.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent advances in the joint processing of a set of images have shown its advantages over individual processing. Unlike the existing works geared towards co-segmentation or co-localization, in this article, we explore a new joint processing topic: image co-skeletonization, which is defined as joint skeleton extraction of the foreground objects in an image collection. It is well known that object skeletonization in a single natural image is challenging, because there is hardly any prior knowledge available about the object present in the image. Therefore, we resort to the idea of image co-skeletonization, hoping that the commonness prior that exists across the semantically similar images can be leveraged to have such knowledge, similar to other joint processing problems such as co-segmentation. Moreover, earlier research has found that augmenting a skeletonization process with the object's shape information is highly beneficial in capturing the image context. Having made these two observations, we propose a coupled framework for co-skeletonization and co-segmentation tasks to facilitate shape information discovery for our co-skeletonization process through the co-segmentation process. While image co-skeletonization is our primary goal, the co-segmentation process might also benefit, in turn, from exploiting skeleton outputs of the co-skeletonization process as central object seeds through such a coupled framework. As a result, both can benefit from each other synergistically. For evaluating image co-skeletonization results, we also construct a novel benchmark dataset by annotating nearly 1.8 K images and dividing them into 38 semantic categories. Although the proposed idea is essentially a weakly supervised method, it can also be employed in supervised and unsupervised scenarios. Extensive experiments demonstrate that the proposed method achieves promising results in all three scenarios 
650 4 |a Journal Article 
700 1 |a Cai, Jianfei  |e verfasserin  |4 aut 
700 1 |a Lu, Jiangbo  |e verfasserin  |4 aut 
700 1 |a Yuan, Junsong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 2784-2797  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:2784-2797 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3054464  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 2784-2797