Bidirectional Interaction Network for Person Re-Identification

Person re-identification (ReID) task aims to retrieve the same person across multiple spatially disjoint camera views. Due to huge image changes caused by various factors such as posture variation and illumination transformation, images of different persons may share the more similar appearances tha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 13., Seite 1935-1948
1. Verfasser: Chen, Xiumei (VerfasserIn)
Weitere Verfasser: Zheng, Xiangtao, Lu, Xiaoqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM320031462
003 DE-627
005 20250228181310.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3049943  |2 doi 
028 5 2 |a pubmed25n1066.xml 
035 |a (DE-627)NLM320031462 
035 |a (NLM)33439839 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Xiumei  |e verfasserin  |4 aut 
245 1 0 |a Bidirectional Interaction Network for Person Re-Identification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.07.2021 
500 |a Date Revised 23.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Person re-identification (ReID) task aims to retrieve the same person across multiple spatially disjoint camera views. Due to huge image changes caused by various factors such as posture variation and illumination transformation, images of different persons may share the more similar appearances than images of the same one. Learning discriminative representations to distinguish details of different persons is significant for person ReID. Many existing methods learn discriminative representations resorting to a human body part location branch which requires cumbersome expert human annotations or complex network designs. In this article, a novel bidirectional interaction network is proposed to explore discriminative representations for person ReID without any human body part detection. The proposed method regards multiple convolutional features as responses to various body part properties and exploits the inter-layer interaction to mine discriminative representations for person identities. Firstly, an inter-layer bilinear pooling strategy is proposed to feasibly exploit the pairwise feature relations between two convolution layers. Secondly, to explore interaction of multiple layers, an effective bidirectional integration strategy consisting of two different multi-layer interaction processes is designed to aggregate bilinear pooling interaction of multiple convolution layers. The interaction of multiple layers is implemented in a layer-by-layer nesting policy to ensure the two interaction processes are different and complementary. Extensive experiments validate the superiority of the proposed method on four popular person ReID datasets including Market-1501, DukeMTMC-ReID, CUHK03-NP and MSMT17. Specifically, the proposed method achieves a rank-1 accuracy of 95.1% and 88.2% on Market-1501 and DukeMTMC-ReID, respectively 
650 4 |a Journal Article 
700 1 |a Zheng, Xiangtao  |e verfasserin  |4 aut 
700 1 |a Lu, Xiaoqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 13., Seite 1935-1948  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:13  |g pages:1935-1948 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3049943  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 13  |h 1935-1948