Enhanced flotation efficiency of metal from waste printed circuit boards modified by alkaline immersion

Copyright © 2020 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 120(2021) vom: 01. Feb., Seite 795-804
1. Verfasser: Dai, Guofu (VerfasserIn)
Weitere Verfasser: Han, Jun, Duan, Chenlong, Tang, Ligang, Peng, Yonghui, Chen, Youmei, Jiang, Haishen, Zhu, Zhenhua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Alkaline immersion Flotation Recovery Waste printed circuit boards Metals
Beschreibung
Zusammenfassung:Copyright © 2020 Elsevier Ltd. All rights reserved.
Efficient recycling of waste printed circuit boards by flotation has become a research focus. In this study, waste printed circuit boards were treated by alkaline immersion to enhance the flotation efficiency. Firstly, the SEM-EDS analysis of the crushed products shown that metal and nonmetal were completely liberated in the -0.25 mm fraction. When the printed circuit boards were modified by alkaline immersion, the recovery of metal increased from 64.34% to 72.35%. Further, the mixture of metal and nonmetal at the edge of nonmetal was discovered by EPMA. This was the cause of metal loss during the flotation process. Secondly, by adjusting the alkaline immersion time and pH value, a good flotation effect was achieved at 40 min alkaline immersion time and the pH = 11. Meanwhile, the XPS analysis of nonmetal found that the intensity of the OH peak was significantly enhanced, while the intensity of the O peak was evidently decreased. The change of the resin molecular structure indicated that the O linked to the benzene ring was broken under the action of alkaline immersion, resulting a free bond was generated on the benzene ring. This made the free OH adsorb to the free bond. This conduct promoted the dispersion of nonmetal in the slurry due to the increased nonmetal surface energy and metal hydrophilicity. Thus, this study provides a new route to improve the flotation efficiency of waste printed circuit boards
Beschreibung:Date Completed 29.12.2020
Date Revised 29.12.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1879-2456
DOI:10.1016/j.wasman.2020.11.002