Low Rank Matrix Approximation for 3D Geometry Filtering
We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix a...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 4 vom: 01. Apr., Seite 1835-1847 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article |
Zusammenfassung: | We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods |
---|---|
Beschreibung: | Date Revised 28.02.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2020.3026785 |