Group Sparsity Residual Constraint with Non-Local Priors for Image Restoration

Group sparse representation (GSR) has made great strides in image restoration producing superior performance, realized through employing a powerful mechanism to integrate the local sparsity and nonlocal self-similarity of images. However, due to some form of degradation (e.g., noise, down-sampling o...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 09. Sept.
Auteur principal: Zha, Zhiyuan (Auteur)
Autres auteurs: Yuan, Xin, Wen, Bihan, Zhou, Jiantao, Zhu, Ce
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:Group sparse representation (GSR) has made great strides in image restoration producing superior performance, realized through employing a powerful mechanism to integrate the local sparsity and nonlocal self-similarity of images. However, due to some form of degradation (e.g., noise, down-sampling or pixels missing), traditional GSR models may fail to faithfully estimate sparsity of each group in an image, thus resulting in a distorted reconstruction of the original image. This motivates us to design a simple yet effective model that aims to address the above mentioned problem. Specifically, we propose group sparsity residual constraint with nonlocal priors (GSRC-NLP) for image restoration. Through introducing the group sparsity residual constraint, the problem of image restoration is further defined and simplified through attempts at reducing the group sparsity residual. Towards this end, we first obtain a good estimation of the group sparse coefficient of each original image group by exploiting the image nonlocal self-similarity (NSS) prior along with self-supervised learning scheme, and then the group sparse coefficient of the corresponding degraded image group is enforced to approximate the estimation. To make the proposed scheme tractable and robust, two algorithms, i.e., iterative shrinkage/thresholding (IST) and alternating direction method of multipliers (ADMM), are employed to solve the proposed optimization problems for different image restoration tasks. Experimental results on image denoising, image inpainting and image compressive sensing (CS) recovery, demonstrate that the proposed GSRC-NLP based image restoration algorithm is comparable to state-of-the-art denoising methods and outperforms several state-of-the-art image inpainting and image CS recovery methods in terms of both objective and perceptual quality metrics
Description:Date Revised 22.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2020.3021291