Empirical orthogonal function regression : Linking population biology to spatial varying environmental conditions using climate projections

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 8 vom: 17. Aug., Seite 4638-4649
1. Verfasser: Thorson, James T (VerfasserIn)
Weitere Verfasser: Cheng, Wei, Hermann, Albert J, Ianelli, James N, Litzow, Michael A, O'Leary, Cecilia A, Thompson, Grant G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Regional Ocean Modeling System (ROMS) Ricker model delta-correction method empirical orthogonal function (EOF) end-of-century projection stock-recruit analysis
LEADER 01000naa a22002652 4500
001 NLM310450608
003 DE-627
005 20231225140119.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15149  |2 doi 
028 5 2 |a pubmed24n1034.xml 
035 |a (DE-627)NLM310450608 
035 |a (NLM)32463171 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Thorson, James T  |e verfasserin  |4 aut 
245 1 0 |a Empirical orthogonal function regression  |b Linking population biology to spatial varying environmental conditions using climate projections 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.11.2020 
500 |a Date Revised 26.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a Ecologists and oceanographers inform population and ecosystem management by identifying the physical drivers of ecological dynamics. However, different research communities use different analytical tools where, for example, physical oceanographers often apply rank-reduction techniques (a.k.a. empirical orthogonal functions [EOF]) to identify indicators that represent dominant modes of physical variability, whereas population ecologists use dynamical models that incorporate physical indicators as covariates. Simultaneously modeling physical and biological processes would have several benefits, including improved communication across sub-fields; more efficient use of limited data; and the ability to compare importance of physical and biological drivers for population dynamics. Here, we develop a new statistical technique, EOF regression, which jointly models population-scale dynamics and spatially distributed physical dynamics. EOF regression is fitted using maximum-likelihood techniques and applies a generalized EOF analysis to environmental measurements, estimates one or more time series representing modes of environmental variability, and simultaneously estimates the association of this time series with biological measurements. By doing so, it identifies a spatial map of environmental conditions that are best correlated with annual variability in the biological process. We demonstrate this method using a linear (Ricker) model for early-life survival ("recruitment") of three groundfish species in the eastern Bering Sea from 1982 to 2016, combined with measurements and end-of-century projections for bottom and sea surface temperature. Results suggest that (a) we can forecast biological dynamics while applying delta-correction and statistical downscaling to calibrate measurements and projected physical variables, (b) physical drivers are statistically significant for Pacific cod and walleye pollock recruitment, (c) separately analyzing physical and biological variables fails to identify the significant association for walleye pollock, and (d) cod and pollock will likely have reduced recruitment given forecasted temperatures over future decades 
650 4 |a Journal Article 
650 4 |a Regional Ocean Modeling System (ROMS) 
650 4 |a Ricker model 
650 4 |a delta-correction method 
650 4 |a empirical orthogonal function (EOF) 
650 4 |a end-of-century projection 
650 4 |a stock-recruit analysis 
700 1 |a Cheng, Wei  |e verfasserin  |4 aut 
700 1 |a Hermann, Albert J  |e verfasserin  |4 aut 
700 1 |a Ianelli, James N  |e verfasserin  |4 aut 
700 1 |a Litzow, Michael A  |e verfasserin  |4 aut 
700 1 |a O'Leary, Cecilia A  |e verfasserin  |4 aut 
700 1 |a Thompson, Grant G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 8 vom: 17. Aug., Seite 4638-4649  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:8  |g day:17  |g month:08  |g pages:4638-4649 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15149  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 8  |b 17  |c 08  |h 4638-4649