Mixed carbon source improves deep denitrification performance in up-flow anaerobic sludge bed reactor

To investigate the advantages of mixed carbon source over a single one in deep denitrification, sodium acetate, glucose and their mixture were used as carbon sources in present study. Denitrification performance, effluent pH, microbial community and carbon source cost were taken into account. With t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 81(2020), 4 vom: 11. Feb., Seite 763-772
1. Verfasser: Xiao, Hong (VerfasserIn)
Weitere Verfasser: Wu, Jiaojiao, Peng, Hong, Jiang, Zhongyao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article RNA, Ribosomal, 16S Sewage Carbon 7440-44-0 Nitrogen N762921K75
Beschreibung
Zusammenfassung:To investigate the advantages of mixed carbon source over a single one in deep denitrification, sodium acetate, glucose and their mixture were used as carbon sources in present study. Denitrification performance, effluent pH, microbial community and carbon source cost were taken into account. With the same influent NO3--N concentration of 50 mg/L and the same C/N ratio of 1.5, the NO3--N removal rate with the mixed carbon source (96.53%) was slightly lower than that with sodium acetate (98.15%), but significantly higher than that with glucose (74.69%). The specific denitrification rates of the sodium acetate, glucose and sodium acetate/glucose reactor were 47.7, 29.7 and 45.4 mg N/g VSS d, respectively. The effluent pH with sodium acetate varied in the range of 9.13-9.60, exceeding the discharge standard limit of 9.0, whereas the sodium acetate/glucose reactor could keep pH in the range of 7.80-8.23. The 16S rRNA gene-based high-throughput sequencing revealed that carbon sources determined the microbial community structure and the sludge Shannon index with the mixed carbon source was the highest. Furthermore, cost estimation indicated that the mixed carbon source was the cheapest. This study is significant as it tests reasonable selection of carbon sources for deep denitrification in practice
Beschreibung:Date Completed 29.05.2020
Date Revised 15.12.2020
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2020.159