Channel Attention Module With Multiscale Grid Average Pooling for Breast Cancer Segmentation in an Ultrasound Image

Breast cancer accounts for the second-largest number of deaths in women around the world, and more than 8% of women will suffer from the disease in their lifetime. Mortality due to breast cancer can be reduced by its early and precise diagnosis. Many studies have investigated methods for segmentatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 67(2020), 7 vom: 01. Juli, Seite 1344-1353
1. Verfasser: Lee, Haeyun (VerfasserIn)
Weitere Verfasser: Park, Jinhyoung, Hwang, Jae Youn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM306487977
003 DE-627
005 20250226181625.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2020.2972573  |2 doi 
028 5 2 |a pubmed25n1021.xml 
035 |a (DE-627)NLM306487977 
035 |a (NLM)32054578 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Haeyun  |e verfasserin  |4 aut 
245 1 0 |a Channel Attention Module With Multiscale Grid Average Pooling for Breast Cancer Segmentation in an Ultrasound Image 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2021 
500 |a Date Revised 21.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Breast cancer accounts for the second-largest number of deaths in women around the world, and more than 8% of women will suffer from the disease in their lifetime. Mortality due to breast cancer can be reduced by its early and precise diagnosis. Many studies have investigated methods for segmentation, and computer-aided diagnosis based on deep learning techniques, in particular, has recently gained attention. However, recently proposed methods such as fully convolutional network (FCN), SegNet, and U-Net still need to be further improved to provide better semantic segmentation when diagnosing breast cancer by ultrasound imaging, because of their low performance. In this article, we propose a channel attention module with multiscale grid average pooling (MSGRAP) for the precise segmentation of breast cancer regions in ultrasound images. We demonstrate the effectiveness of the channel attention module with MSGRAP for semantic segmentation and develop a novel semantic segmentation network with the proposed attention module for the precise segmentation of breast cancer regions in ultrasound images. While a conventional convolutional operation cannot use global spatial information on input images and only use the small local information in a kernel of a convolution filter, the proposed attention module allows using both global and local spatial information. In addition, through ablation studies, we come up with a network architecture for precise breast cancer segmentation in an ultrasound image. The proposed network was constructed with an open-source breast cancer ultrasound image data set, and its performance was compared with those of other state-of-the-art deep-learning models for the segmentation of breast cancer. The experimental results showed that our network outperformed other segmentation methods, and the proposed channel attention module improved the performance of the network for breast cancer segmentation in ultrasound images 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Park, Jinhyoung  |e verfasserin  |4 aut 
700 1 |a Hwang, Jae Youn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 67(2020), 7 vom: 01. Juli, Seite 1344-1353  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:67  |g year:2020  |g number:7  |g day:01  |g month:07  |g pages:1344-1353 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2020.2972573  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 67  |j 2020  |e 7  |b 01  |c 07  |h 1344-1353