Light Field Saliency Detection with Deep Convolutional Networks

Light field imaging presents an attractive alternative to RGB imaging because of the recording of the direction of the incoming light. The detection of salient regions in a light field image benefits from the additional modeling of angular patterns. For RGB imaging, methods using CNNs have achieved...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 05. Feb.
1. Verfasser: Zhang, Jun (VerfasserIn)
Weitere Verfasser: Liu, Yamei, Zhang, Shengping, Poppe, Ronald, Wang, Meng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM306265516
003 DE-627
005 20250226172050.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2970529  |2 doi 
028 5 2 |a pubmed25n1020.xml 
035 |a (DE-627)NLM306265516 
035 |a (NLM)32031938 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jun  |e verfasserin  |4 aut 
245 1 0 |a Light Field Saliency Detection with Deep Convolutional Networks 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Light field imaging presents an attractive alternative to RGB imaging because of the recording of the direction of the incoming light. The detection of salient regions in a light field image benefits from the additional modeling of angular patterns. For RGB imaging, methods using CNNs have achieved excellent results on a range of tasks, including saliency detection. However, it is not trivial to use CNN-based methods for saliency detection on light field images because these methods are not specifically designed for processing light field inputs. In addition, current light field datasets are not sufficiently large to train CNNs. To overcome these issues, we present a new Lytro Illum dataset, which contains 640 light fields and their corresponding ground-truth saliency maps. Compared to current publicly available light field saliency datasets [1], [2], our new dataset is larger, of higher quality, contains more variation and more types of light field inputs. This makes our dataset suitable for training deeper networks and benchmarking. Furthermore, we propose a novel end-to-end CNN-based framework for light field saliency detection. Specifically, we propose three novel MAC (Model Angular Changes) blocks to process light field micro-lens images. We systematically study the impact of different architecture variants and compare light field saliency with regular 2D saliency. Our extensive comparisons indicate that our novel network significantly outperforms state-of-the-art methods on the proposed dataset and has desired generalization abilities on other existing datasets 
650 4 |a Journal Article 
700 1 |a Liu, Yamei  |e verfasserin  |4 aut 
700 1 |a Zhang, Shengping  |e verfasserin  |4 aut 
700 1 |a Poppe, Ronald  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 05. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2020  |g day:05  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2970529  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 05  |c 02