A Single Noninterleaved Metasurface for High-Capacity and Flexible Mode Multiplexing of Higher-Order Poincaré Sphere Beams
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 6 vom: 30. Feb., Seite e1903983 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article high-capacity photonics metasurfaces vector vortex beams wavefront shaping |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Cylindrical vector vortex beams, a particular class of higher-order Poincaré sphere beams, are generalized forms of waves carrying orbital angular momentum with inhomogeneous states-of-polarization on their wavefronts. Conventional methods as well as the more recently proposed segmented/interleaved shared-aperture metasurfaces for vortex beam generation are either severely limited by bulky optical setups or by restricted channel capacity with low efficiency and mode number. Here, a noninterleaved vortex multiplexing approach is proposed, which utilizes superimposed scattered waves with opposite spin states emanating from all meta-atoms in a coherent manner, counter-intuitively enabling ultrahigh-capacity, high-efficiency, and flexible generation of massive vortex beams with structured state-of-polarization. A series of exemplary prototypes, implemented by sub-wavelength-thick metasurfaces, are demonstrated experimentally, achieving kaleidoscopic vector vortex beams. This methodology holds great promise for structured wavefront shaping, vortex generation, and high information-capacity planar photonics, which may have a profound impact on transformative technological advances in fields including spin-Hall photonics, optical holography, compressive imaging, electromagnetic communication, and so on |
---|---|
Beschreibung: | Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201903983 |