Bionic Detectors Based on Low-Bandgap Inorganic Perovskite for Selective NIR-I Photon Detection and Imaging

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 6 vom: 03. Feb., Seite e1905362
1. Verfasser: Cao, Fei (VerfasserIn)
Weitere Verfasser: Chen, Jingde, Yu, Dejian, Wang, Shu, Xu, Xiaobao, Liu, Jiaxin, Han, Zeyao, Huang, Bo, Gu, Yu, Choy, Kwang Leong, Zeng, Haibo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article NIR-I detection bionic photodetector fluorescence imaging halide perovskite narrowband detection Calcium Compounds Oxides perovskite 12194-71-7 mehr... Cesium 1KSV9V4Y4I Lead 2P299V784P Titanium D1JT611TNE
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescence imaging with photodetectors (PDs) toward near-infrared I (NIR-I) photons (700-900 nm), the so-called "optical window" in organisms, has provided an important path for tracing biological processes in vivo. With both excitation photons and fluorescence photons in this narrow range, a stringent requirement arises that the fluorescence signal should be efficiently differentiated for effective sensing, which cannot be fulfilled by common PDs with a broadband response such as Si-based PDs. In this work, delicate optical microcavities are designed to develop a series of bionic PDs with selective response to NIR-I photons, the merits of a narrowband response with a full width at half maximum (FWHM) of <50 nm, and tunability to cover the NIR-I range are highlighted. Inorganic halide perovskite CsPb0.5 Sn0.5 I3 is chosen as the photoactive layer with comprehensive bandgap and film engineering. As a result, these bionic PDs offer a signal/noise ratio of ≈106 , a large bandwidth of 543 kHz and an ultralow detection limit of 0.33 nW. Meanwhile, the peak responsivity (R) and detectivity (D*) reach up to 270 mA W-1 and 5.4 × 1014 Jones, respectively. Finally, proof-of-concept NIR-I imaging using the PDs is demonstrated to show great promise in real-life application
Beschreibung:Date Completed 16.11.2020
Date Revised 16.11.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201905362