Recurrent Temporal Aggregation Framework for Deep Video Inpainting

Video inpainting aims to fill in spatio-temporal holes in videos with plausible content. Despite tremendous progress on deep learning-based inpainting of a single image, it is still challenging to extend these methods to video domain due to the additional time dimension. In this paper, we propose a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 5 vom: 15. Mai, Seite 1038-1052
Auteur principal: Kim, Dahun (Auteur)
Autres auteurs: Woo, Sanghyun, Lee, Joon-Young, Kweon, In So
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM30432583X
003 DE-627
005 20250226100449.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2958083  |2 doi 
028 5 2 |a pubmed25n1014.xml 
035 |a (DE-627)NLM30432583X 
035 |a (NLM)31831407 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Dahun  |e verfasserin  |4 aut 
245 1 0 |a Recurrent Temporal Aggregation Framework for Deep Video Inpainting 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video inpainting aims to fill in spatio-temporal holes in videos with plausible content. Despite tremendous progress on deep learning-based inpainting of a single image, it is still challenging to extend these methods to video domain due to the additional time dimension. In this paper, we propose a recurrent temporal aggregation framework for fast deep video inpainting. In particular, we construct an encoder-decoder model, where the encoder takes multiple reference frames which can provide visible pixels revealed from the scene dynamics. These hints are aggregated and fed into the decoder. We apply a recurrent feedback in an auto-regressive manner to enforce temporal consistency in the video results. We propose two architectural designs based on this framework. Our first model is a blind video decaptioning network (BVDNet) that is designed to automatically remove and inpaint text overlays in videos without any mask information. Our BVDNet wins the first place in the ECCV Chalearn 2018 LAP Inpainting Competition Track 2: Video Decaptioning. Second, we propose a network for more general video inpainting (VINet) to deal with more arbitrary and larger holes. Video results demonstrate the advantage of our framework compared to state-of-the-art methods both qualitatively and quantitatively. The codes are available at https://github.com/mcahny/Deep-Video-Inpainting, and https://github.com/shwoo93/video_decaptioning 
650 4 |a Journal Article 
700 1 |a Woo, Sanghyun  |e verfasserin  |4 aut 
700 1 |a Lee, Joon-Young  |e verfasserin  |4 aut 
700 1 |a Kweon, In So  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 5 vom: 15. Mai, Seite 1038-1052  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:42  |g year:2020  |g number:5  |g day:15  |g month:05  |g pages:1038-1052 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2958083  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 5  |b 15  |c 05  |h 1038-1052