Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions

Copyright © 2019 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 241(2019) vom: 15. Okt., Seite 153034
1. Verfasser: Hidalgo-Castellanos, Javier (VerfasserIn)
Weitere Verfasser: Duque, Ana Sofia, Burgueño, Alvaro, Herrera-Cervera, José A, Fevereiro, Pedro, López-Gómez, Miguel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Medicago truncatula Nitrogen fixation Polyamines Salt stress Symbiosis Amino Acids Plant Proteins Spermine 2FZ7Y3VOQX mehr... Proline 9DLQ4CIU6V Hydrogen Peroxide BBX060AN9V Catalase EC 1.11.1.6 Carboxy-Lyases EC 4.1.1.- arginine decarboxylase EC 4.1.1.19
LEADER 01000caa a22002652 4500
001 NLM301026483
003 DE-627
005 20250225225228.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2019.153034  |2 doi 
028 5 2 |a pubmed25n1003.xml 
035 |a (DE-627)NLM301026483 
035 |a (NLM)31493718 
035 |a (PII)S0176-1617(19)30151-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hidalgo-Castellanos, Javier  |e verfasserin  |4 aut 
245 1 0 |a Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.02.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2019 Elsevier GmbH. All rights reserved. 
520 |a Legumes have the capacity to fix nitrogen in symbiosis with soil bacteria known as rhizobia by the formation of root nodules. However, nitrogen fixation is highly sensitive to soil salinity with a concomitant reduction of the plant yield and soil fertilization. Polycationic aliphatic amines known as polyamines (PAs) have been shown to be involved in the response to a variety of stresses in plants including soil salinity. Therefore, the generation of transgenic plants overexpressing genes involved in PA biosynthesis have been proposed as a promising tool to improve salt stress tolerance in plants. In this work we tested whether the modulation of PAs in transgenic Medicago truncatula plants was advantageous for the symbiotic interaction with Sinorhizobium meliloti under salt stress conditions, when compared to wild type plants. Consequently, we characterized the symbiotic response to salt stress of the homozygous M. truncatula plant line L-108, constitutively expressing the oat adc gene, coding for the PA biosynthetic enzyme arginine decarboxylase, involved in PAs biosynthesis. In a nodulation kinetic assay, nodule number incremented in L-108 plants under salt stress. In addition, these plants at vegetative stage showed higher nitrogenase and nodule biomass and, under salt stress, accumulated proline (Pro) and spermine (Spm) in nodules, while in wt plants, the accumulation of glutamic acid (Glu), γ-amino butyric acid (GABA) and 1-aminocyclopropane carboxylic acid (ACC) (the ethylene (ET) precursor) were the metabolites involved in the salt stress response. Therefore, overexpression of oat adc gene favours the symbiotic interaction between plants of M. truncatula L-108 and S. meliloti under salt stress and the accumulation of Pro and Spm, seems to be the molecules involved in salt stress tolerance 
650 4 |a Journal Article 
650 4 |a Medicago truncatula 
650 4 |a Nitrogen fixation 
650 4 |a Polyamines 
650 4 |a Salt stress 
650 4 |a Symbiosis 
650 7 |a Amino Acids  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Spermine  |2 NLM 
650 7 |a 2FZ7Y3VOQX  |2 NLM 
650 7 |a Proline  |2 NLM 
650 7 |a 9DLQ4CIU6V  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Carboxy-Lyases  |2 NLM 
650 7 |a EC 4.1.1.-  |2 NLM 
650 7 |a arginine decarboxylase  |2 NLM 
650 7 |a EC 4.1.1.19  |2 NLM 
700 1 |a Duque, Ana Sofia  |e verfasserin  |4 aut 
700 1 |a Burgueño, Alvaro  |e verfasserin  |4 aut 
700 1 |a Herrera-Cervera, José A  |e verfasserin  |4 aut 
700 1 |a Fevereiro, Pedro  |e verfasserin  |4 aut 
700 1 |a López-Gómez, Miguel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 241(2019) vom: 15. Okt., Seite 153034  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:241  |g year:2019  |g day:15  |g month:10  |g pages:153034 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2019.153034  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 241  |j 2019  |b 15  |c 10  |h 153034