Well-Designed Porous Graphene Flakes for Lithium-Ion Batteries with Outstanding Rate Performance
Porous graphene flakes (PGFs) with controllable pore sizes are selectively prepared through self-assembly of Fe3O4 nanoparticles on organic modified montmorillonite combined with carbonization and subsequent annealing treatment. The resulting PGFs with a thickness of 5 nm have a specific surface are...
| Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 39 vom: 01. Okt., Seite 12613-12619 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2019
|
| Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
| Schlagworte: | Journal Article |
| Zusammenfassung: | Porous graphene flakes (PGFs) with controllable pore sizes are selectively prepared through self-assembly of Fe3O4 nanoparticles on organic modified montmorillonite combined with carbonization and subsequent annealing treatment. The resulting PGFs with a thickness of 5 nm have a specific surface area of 337 m2/g, pore volume of 0.66 cm3/g, and mean pore diameter of 15 nm. Due to their unique porous flake structures, PGFs show an impressive rate performance in lithium-ion batteries, especially at high current densities (238 mA h/g at 10 C) as well as long-term stability in comparison to the commercial graphite (55 mA h/g at 10 C). Therefore, PGFs with their key structural properties serve as ideal candidates as electrode components in lithium-ion batteries and show great potential application in other energy storage fields |
|---|---|
| Beschreibung: | Date Revised 04.03.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1520-5827 |
| DOI: | 10.1021/acs.langmuir.8b03477 |