Spectral Analysis of Quadrature Rules and Fourier Truncation-Based Methods Applied to Shading Integrals

We propose a theoretical framework, based on the theory of Sobolev spaces, that allows for a comprehensive analysis of quadrature rules for integration over the sphere. We apply this framework to the case of shading integrals in order to predict and analyze the performances of quadrature methods. We...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 26(2020), 10 vom: 26. Okt., Seite 3022-3036
1. Verfasser: Marques, Ricardo (VerfasserIn)
Weitere Verfasser: Bouville, Christian, Bouatouch, Kadi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM296542628
003 DE-627
005 20250225063544.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2913418  |2 doi 
028 5 2 |a pubmed25n0988.xml 
035 |a (DE-627)NLM296542628 
035 |a (NLM)31034416 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marques, Ricardo  |e verfasserin  |4 aut 
245 1 0 |a Spectral Analysis of Quadrature Rules and Fourier Truncation-Based Methods Applied to Shading Integrals 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a theoretical framework, based on the theory of Sobolev spaces, that allows for a comprehensive analysis of quadrature rules for integration over the sphere. We apply this framework to the case of shading integrals in order to predict and analyze the performances of quadrature methods. We show that the spectral distribution of the quadrature error depends not only on the samples set size, distribution and weights, but also on the BRDF and the integrand smoothness. The proposed spectral analysis of quadrature error allows for a better understanding of how the above different factors interact. We also extend our analysis to the case of Fourier truncation-based techniques applied to the shading integral, so as to find the smallest spherical/hemispherical harmonics degree L (truncation) that entails a targeted integration error. This application is very beneficial to global illumination methods such as Precomputed Radiance Transfer and Radiance Caching. Finally, our proposed framework is the first to allow a direct theoretical comparison between quadrature- and truncation-based methods applied to the shading integral. This enables, for example, to determine the spherical harmonics degree L which corresponds to a quadrature-based integration with N samples. Our theoretical findings are validated by a set of rendering experiments 
650 4 |a Journal Article 
700 1 |a Bouville, Christian  |e verfasserin  |4 aut 
700 1 |a Bouatouch, Kadi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 26(2020), 10 vom: 26. Okt., Seite 3022-3036  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:10  |g day:26  |g month:10  |g pages:3022-3036 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2913418  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 10  |b 26  |c 10  |h 3022-3036