Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 19 vom: 15. Juli, Seite 1789-1799
1. Verfasser: Delcey, Mickael G (VerfasserIn)
Weitere Verfasser: Sørensen, Lasse Kragh, Vacher, Morgane, Couto, Rafael C, Lundberg, Marcus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article X-ray spectroscopy computational cost configuration interaction excited states multiconfigurational wavefunction
LEADER 01000caa a22002652c 4500
001 NLM295607823
003 DE-627
005 20250225040523.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25832  |2 doi 
028 5 2 |a pubmed25n0985.xml 
035 |a (DE-627)NLM295607823 
035 |a (NLM)30938847 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Delcey, Mickael G  |e verfasserin  |4 aut 
245 1 0 |a Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a Electronically excited states play important roles in many chemical reactions and spectroscopic techniques. In quantum chemistry, a common technique to solve excited states is the multiroot Davidson algorithm, but it is not designed for processes like X-ray spectroscopy that involves hundreds of highly excited states. We show how the use of a restricted active space wavefunction together with a projection operator to remove low-lying electronic states offers an efficient way to reach single and double-core-hole states. Additionally, several improvements to the stability and efficiency of the configuration interaction (CI) algorithm for a large number of states are suggested. When applied to a series of transition metal complexes the new CI algorithm does not only resolve divergence issues but also leads to typical reduction in computational time by 70%, with the largest savings for small molecules and large active spaces. Together, the projection operator and the improved CI algorithm now make it possible to simulate a wide range of single- and two-photon spectroscopies. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a X-ray spectroscopy 
650 4 |a computational cost 
650 4 |a configuration interaction 
650 4 |a excited states 
650 4 |a multiconfigurational wavefunction 
700 1 |a Sørensen, Lasse Kragh  |e verfasserin  |4 aut 
700 1 |a Vacher, Morgane  |e verfasserin  |4 aut 
700 1 |a Couto, Rafael C  |e verfasserin  |4 aut 
700 1 |a Lundberg, Marcus  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 19 vom: 15. Juli, Seite 1789-1799  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:40  |g year:2019  |g number:19  |g day:15  |g month:07  |g pages:1789-1799 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25832  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 19  |b 15  |c 07  |h 1789-1799