Deep soil flipping increases carbon stocks of New Zealand grasslands

© 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 25(2019), 7 vom: 15. Juli, Seite 2296-2309
1. Verfasser: Schiedung, Marcus (VerfasserIn)
Weitere Verfasser: Tregurtha, Craig S, Beare, Michael H, Thomas, Steve M, Don, Axel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't carbon burial carbon sequestration carbon stocks chronosequence grassland re-sampling soil organic carbon subsoil mehr... Soil Carbon Dioxide 142M471B3J
Beschreibung
Zusammenfassung:© 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Sequestration of soil organic carbon (SOC) has been recognized as an opportunity to off-set global carbon dioxide (CO2 ) emissions. Flipping (full inversion to 1-3 m) is a practice used on New Zealand's South Island West Coast to eliminate water-logging in highly podzolized sandy soils. Flipping results in burial of SOC formed in surface soil horizons into the subsoil and the transfer of subsoil material low in SOC to the "new" topsoil. The aims of this study were to quantify changes in the storage and stability of SOC over a 20-year period following flipping of high-productive pasture grassland. Topsoils (0-30 cm) from sites representing a chronosequence of flipping (3-20 years old) were sampled (2005/07) and re-sampled (2017) to assess changes in topsoil carbon stocks. Deeper samples (30-150 cm) were also collected (2017) to evaluate the changes in stocks of SOC previously buried by flipping. Density fractionation was used to determine SOC stability in recent and buried topsoils. Total SOC stocks (0-150 cm) increased significantly by 69 ± 15% (179 ± 40 Mg SOC ha-1 ) over 20 years following flipping. Topsoil burial caused a one-time sequestration of 160 ± 14 Mg SOC ha-1 (30-150 cm). The top 0-30 cm accumulated 3.6 Mg SOC ha-1  year-1 . The chronosequence and re-sampling revealed SOC accumulation rates of 1.2-1.8 Mg SOC ha-1  year-1 in the new surface soil (0-15 cm) and a SOC deficit of 36 ± 5% after 20 years. Flipped subsoils contained up to 32% labile SOC (compared to <1% in un-flipped subsoils) thus buried SOC was preserved. This study confirms that burial of SOC and the exposure of SOC depleted subsoil results in an overall increase of SOC stocks of the whole soil profile and long-term SOC preservation
Beschreibung:Date Completed 11.10.2019
Date Revised 16.04.2021
published: Print-Electronic
ErratumIn: Glob Chang Biol. 2021 May;27(10):2269. doi: 10.1111/gcb.15536. - PMID 33860976
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.14588