Conjugated Donor-Acceptor Terpolymers Toward High-Efficiency Polymer Solar Cells

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 22 vom: 30. Mai, Seite e1807019
1. Verfasser: Dang, Dongfeng (VerfasserIn)
Weitere Verfasser: Yu, Donghong, Wang, Ergang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review conjugated polymers donor-acceptor terpolymers polymer solar cells random polymers regioregular polymers
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The development of conjugated alternating donor-acceptor (D-A) copolymers with various electron-rich and electron-deficient units in polymer backbones has boosted the power conversion efficiency (PCE) over 17% for polymer solar cells (PSCs) over the past two decades. However, further enhancements in PCEs for PSCs are still imperative to compensate their imperfect stability for fulfilling practical applications. Meanwhile development of these alternating D-A copolymers is highly demanding in creative design and syntheses of novel D and/or A monomers. In this regard, when being possible to adopt an existing monomer unit as a third component from its libraries, either a D' unit or an A' moiety, to the parent D-A type polymer backbones to afford conjugated D-A terpolymers, it will give a facile and cost-effective method to improve their light absorption and tune energy levels and also interchain packing synergistically. Moreover, the rationally controlled stoichiometry for these components in such terpolymers also provides access for further fine-tuning these factors, thus resulting in high-performance PSCs. Herein, based on their unique features, the recent progress of conjugated D-A terpolymers for efficient PSCs is reviewed and it is discussed how these factors influence their photovoltaic performance, for providing useful guidelines to design new terpolymers toward high-efficiency PSCs
Beschreibung:Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201807019