Transition-Metal Oxynitride : A Facile Strategy for Improving Electrochemical Capacitor Storage

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 10 vom: 07. März, Seite e1806088
Auteur principal: Wang, Shouzhi (Auteur)
Autres auteurs: Li, Lili, Shao, Yongliang, Zhang, Lei, Li, Yanlu, Wu, Yongzhong, Hao, Xiaopeng
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article cycling stability electrochemical capacitor storage first principle transition-metal oxynitride
LEADER 01000caa a22002652 4500
001 NLM292659873
003 DE-627
005 20250224160241.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201806088  |2 doi 
028 5 2 |a pubmed25n0975.xml 
035 |a (DE-627)NLM292659873 
035 |a (NLM)30637832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shouzhi  |e verfasserin  |4 aut 
245 1 0 |a Transition-Metal Oxynitride  |b A Facile Strategy for Improving Electrochemical Capacitor Storage 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.03.2019 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a The use of transition-metal oxide (TMO) as an extended-life electrochemical energy storage material remains challenging because TMO undergoes volume expansion during energy storage. In this work, a transition-metal oxynitride layer (TMON, M: Fe, Co, Ni, and V) was synthesized on TMO nanowires to address the crucial issue of volume expansion. The unique oxynitride layer possesses numerous active sites, excellent conductivity, and outstanding stability. These characteristics enhance specific capacitance and alleviate volume expansion effectively. Specifically, the specific capacity of the TMON electrode is enhanced by approximately twofold relative to that of its corresponding oxide. Notably, the capacitance of the TMON remains above 94% even after 10 000 cycles. This result indicates that the cycling performance of the TMON electrode is superior to that of its corresponding oxide. First-principles and quantitative kinetics analyses are performed to investigate the mechanism underlying the improved electrochemical performances of the TMON layers. Results demonstrate that the proposed TMON layer has attractive applications in the fields of energy storage, conversion, and beyond 
650 4 |a Journal Article 
650 4 |a cycling stability 
650 4 |a electrochemical capacitor storage 
650 4 |a first principle 
650 4 |a transition-metal oxynitride 
700 1 |a Li, Lili  |e verfasserin  |4 aut 
700 1 |a Shao, Yongliang  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Li, Yanlu  |e verfasserin  |4 aut 
700 1 |a Wu, Yongzhong  |e verfasserin  |4 aut 
700 1 |a Hao, Xiaopeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 10 vom: 07. März, Seite e1806088  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:10  |g day:07  |g month:03  |g pages:e1806088 
856 4 0 |u http://dx.doi.org/10.1002/adma.201806088  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 10  |b 07  |c 03  |h e1806088