|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM291957773 |
003 |
DE-627 |
005 |
20250224131943.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2018.473
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0973.xml
|
035 |
|
|
|a (DE-627)NLM291957773
|
035 |
|
|
|a (NLM)30566101
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shen, Cheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Adsorption of phosphorus with calcium alginate beads containing drinking water treatment residual
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.05.2019
|
500 |
|
|
|a Date Revised 15.12.2020
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Aluminum-based drinking water treatment residuals (DWTR) were encapsulated by alginate to develop a pelletized media (DWTR-CA beads) for phosphorus (P) adsorption. The beads were successfully manufactured to uniform size and shape requirements. The effects of DWTR powder concentration and particle size, and bead mean size on P adsorption, were investigated. The DWTR was found to be an important component in the beads for P adsorption, while the calcium alginate shell contributed little for P adsorption. The maximum P adsorption capacity of the DWTR-CA bead was 19.42 mg P/g wet beads, corresponding to a bead diameter of 3.1 ± 0.2 mm and DWTR concentration of 2% (1% weight/volume (W/V)), mg/mL). The adsorption data fit well with the intra-particle diffusion model and the pseudo-second-order kinetic model, while both the Langmuir and Freundlich adsorption isotherms described the adsorption process well. Furthermore, the study on the effect of pH on P adsorption showed that acidic conditions resulted in a better P adsorption and the DWTR-CA beads have the function of pH neutralization. The findings of this study show that the DWTR-CA beads are a promising adsorbent/substrate for P removal
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Alginates
|2 NLM
|
650 |
|
7 |
|a Hexuronic Acids
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
650 |
|
7 |
|a Glucuronic Acid
|2 NLM
|
650 |
|
7 |
|a 8A5D83Q4RW
|2 NLM
|
700 |
1 |
|
|a Zhao, Yaqian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Ranbin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mao, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Morgan, David
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 78(2018), 9 vom: 31. Dez., Seite 1980-1989
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:78
|g year:2018
|g number:9
|g day:31
|g month:12
|g pages:1980-1989
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2018.473
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 78
|j 2018
|e 9
|b 31
|c 12
|h 1980-1989
|