A Fast Image Dehazing Algorithm Using Morphological Reconstruction

Outdoor images are used in a vast number of applications, such as surveillance, remote sensing, and autonomous navigation. The greatest issue with these types of images is the effect of environmental pollution: haze, smog, and fog originating from suspended particles in the air, such as dust, carbon...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 07. Dez.
1. Verfasser: Salazar-Colores, Sebastian (VerfasserIn)
Weitere Verfasser: Cabal-Yepez, Eduardo, Ramos-Arreguin, Juan M, Botella, Guillermo, Ledesma-Carrillo, Luis M, Ledesma, Sergio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM291605885
003 DE-627
005 20250224120844.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2885490  |2 doi 
028 5 2 |a pubmed25n0971.xml 
035 |a (DE-627)NLM291605885 
035 |a (NLM)30530329 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Salazar-Colores, Sebastian  |e verfasserin  |4 aut 
245 1 2 |a A Fast Image Dehazing Algorithm Using Morphological Reconstruction 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Outdoor images are used in a vast number of applications, such as surveillance, remote sensing, and autonomous navigation. The greatest issue with these types of images is the effect of environmental pollution: haze, smog, and fog originating from suspended particles in the air, such as dust, carbon and water drops, which cause degradation to the image. The elimination of this type of degradation is essential for the input of computer vision systems. Most of the state-of-the-art research in dehazing algorithms is focused on improving the estimation of transmission maps, which are also known as depth maps. The transmission maps are relevant because they have a direct relation to the quality of the image restoration. In this paper, a novel restoration algorithm is proposed using a single image to reduce the environmental pollution effects, and it is based on the dark channel prior and the use of morphological reconstruction for the fast computing of transmission maps. The obtained experimental results are evaluated and compared qualitatively and quantitatively with other dehazing algorithms using the metrics of the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) index; based on these metrics, it is found that the proposed algorithm has improved performance compared to recently introduced approaches 
650 4 |a Journal Article 
700 1 |a Cabal-Yepez, Eduardo  |e verfasserin  |4 aut 
700 1 |a Ramos-Arreguin, Juan M  |e verfasserin  |4 aut 
700 1 |a Botella, Guillermo  |e verfasserin  |4 aut 
700 1 |a Ledesma-Carrillo, Luis M  |e verfasserin  |4 aut 
700 1 |a Ledesma, Sergio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 07. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:07  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2885490  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 07  |c 12