|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM291567010 |
003 |
DE-627 |
005 |
20250224120003.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/09593330.2018.1551427
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0971.xml
|
035 |
|
|
|a (DE-627)NLM291567010
|
035 |
|
|
|a (NLM)30526418
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Namane, A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Bacterial behaviour in the biodegradation of phenol by indigenous bacteria immobilized in Ca-alginate beads
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.05.2020
|
500 |
|
|
|a Date Revised 20.05.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The phenol biodegradation by Ca-alginate immobilized indigenous bacteria was performed in batch system. The effects of some operational parameters were evaluated, including % weight of alginate, calcium and CaCl2, diameter of spheres; jellification time; solution concentration; adaptation concentration and alginate/cells ratio. The optimal biodegradation conditions were found for 2% and 3% of weight for respectively the sodium alginate and calcium chloride. The hardening time was 30 min and beads diameter of 4 cm. The degradation efficiency of the immobilized strains in these conditions exceeds 800 mg·L-1. The results show that the mass transfer flow (nutritional intake) which depends on the concentration gradient (dC/dz), the physical-chemical properties of alginate beads through the diffusivity coefficient (D), govern the bacterial kinetics and the spatial and temporal behaviour of bacteria
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Biodegradation
|
650 |
|
4 |
|a calcium alginate
|
650 |
|
4 |
|a immobilization
|
650 |
|
4 |
|a indigenous bacteria
|
650 |
|
4 |
|a phenol
|
650 |
|
7 |
|a Alginates
|2 NLM
|
650 |
|
7 |
|a Hexuronic Acids
|2 NLM
|
650 |
|
7 |
|a Phenols
|2 NLM
|
650 |
|
7 |
|a Phenol
|2 NLM
|
650 |
|
7 |
|a 339NCG44TV
|2 NLM
|
650 |
|
7 |
|a Glucuronic Acid
|2 NLM
|
650 |
|
7 |
|a 8A5D83Q4RW
|2 NLM
|
700 |
1 |
|
|a Amrouche, F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Arrar, J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ali, O
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hellal, A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Environmental technology
|d 1993
|g 41(2020), 14 vom: 15. Juni, Seite 1829-1836
|w (DE-627)NLM098202545
|x 1479-487X
|7 nnas
|
773 |
1 |
8 |
|g volume:41
|g year:2020
|g number:14
|g day:15
|g month:06
|g pages:1829-1836
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/09593330.2018.1551427
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 41
|j 2020
|e 14
|b 15
|c 06
|h 1829-1836
|