Simulating Liquids on Dynamically Warping Grids

We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstru...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 6 vom: 30. Juni, Seite 2288-2302
Auteur principal: Ibayashi, Hikaru (Auteur)
Autres auteurs: Wojtan, Chris, Thuerey, Nils, Igarashi, Takeo, Ando, Ryoichi
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
Description
Résumé:We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms
Description:Date Revised 05.05.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2018.2883628