Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 2 vom: 05. Jan., Seite e1804763 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2019
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article confined catalysis electrocatalysis glycerol oxidation graphene platinum nanosheets |
Résumé: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Confined catalysis in a 2D system is of particular interest owing to the facet control of the catalysts and the anisotropic kinetics of reactants, which suppress side reactions and improve selectivity. Here, a 2D-confined system consisting of intercalated Pt nanosheets within few-layered graphene is demonstrated. The strong metal-substrate interaction between the Pt nanosheets and the graphene leads to the quasi-2D growth of Pt with a unique (100)/(111)/(100) faceted structure, thus providing excellent catalytic activity and selectivity toward one-carbon (C1) products for the glycerol oxidation reaction. A hierarchically porous graphene architecture, grown on carbon cloth, is used to fabricate the confined catalyst bed in order to enhance the mass-diffusion limitation in interface-confined reactions. Owing to its unique 3D porous structure, this graphene-confined Pt catalyst exhibits an extraordinary mass activity of 2910 mA mgPt -1 together with a formate selectivity of 79% at 60 °C. This paves the way toward rational designs of heterogeneous catalysts for energy-related applications |
---|---|
Description: | Date Completed 11.01.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201804763 |