Truncated Cauchy Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) minimizes the euclidean distance between the data matrix and its low rank approximation, and it fails when applied to corrupted data because the loss function is sensitive to outliers. In this paper, we propose a Truncated CauchyNMF loss that handle outliers b...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 1 vom: 28. Jan., Seite 246-259
Auteur principal: Guan, Naiyang (Auteur)
Autres auteurs: Liu, Tongliang, Zhang, Yangmuzi, Tao, Dacheng, Davis, Larry S
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't