Multi-Task Learning for Blind Source Separation

Blind source separation (BSS) aims to discover the underlying source signals from a set of linear mixture signals without any prior information of the mixing system, which is a fundamental problem in signal and image processing field. Most of the state-of-the-art algorithms have independently handle...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 9 vom: 01. Sept., Seite 4219-4231
1. Verfasser: Du, Bo (VerfasserIn)
Weitere Verfasser: Wang, Shaodong, Xu, Chang, Wang, Nan, Zhang, Liangpei, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM285152998
003 DE-627
005 20231225044809.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2836324  |2 doi 
028 5 2 |a pubmed24n0950.xml 
035 |a (DE-627)NLM285152998 
035 |a (NLM)29870343 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Bo  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Learning for Blind Source Separation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Blind source separation (BSS) aims to discover the underlying source signals from a set of linear mixture signals without any prior information of the mixing system, which is a fundamental problem in signal and image processing field. Most of the state-of-the-art algorithms have independently handled the decompositions of mixture signals. In this paper, we propose a new algorithm named multi-task sparse model to solve the BSS problem. Source signals are characterized via sparse techniques. Meanwhile, we regard the decomposition of each mixture signal as a task and employ the idea of multi-task learning to discover connections between tasks for the accuracy improvement of the source signal separation. Theoretical analyses on the optimization convergence and sample complexity of the proposed algorithm are provided. Experimental results based on extensive synthetic and real-world data demonstrate the necessity of exploiting connections between mixture signals and the effectiveness of the proposed algorithm 
650 4 |a Journal Article 
700 1 |a Wang, Shaodong  |e verfasserin  |4 aut 
700 1 |a Xu, Chang  |e verfasserin  |4 aut 
700 1 |a Wang, Nan  |e verfasserin  |4 aut 
700 1 |a Zhang, Liangpei  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 9 vom: 01. Sept., Seite 4219-4231  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:9  |g day:01  |g month:09  |g pages:4219-4231 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2836324  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 9  |b 01  |c 09  |h 4219-4231