ROS and redox balance as multifaceted players of cross-tolerance : epigenetic and retrograde control of gene expression
Retrograde pathways occurring between chloroplasts, mitochondria, and the nucleus involve oxidative and antioxidative signals that, working in a synergistic or antagonistic mode, control the expression of specific patterns of genes following stress perception. Increasing evidence also underlines the...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 69(2018), 14 vom: 19. Juni, Seite 3373-3391 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Review Reactive Oxygen Species |
Zusammenfassung: | Retrograde pathways occurring between chloroplasts, mitochondria, and the nucleus involve oxidative and antioxidative signals that, working in a synergistic or antagonistic mode, control the expression of specific patterns of genes following stress perception. Increasing evidence also underlines the relevance of mitochondrion-chloroplast-nucleus crosstalk in modulating the whole cellular redox metabolism by a controlled and integrated flux of information. Plants can maintain the acquired tolerance by a stress memory, also operating at the transgenerational level, via epigenetic and miRNA-based mechanisms controlling gene expression. Data discussed in this review strengthen the idea that ROS, redox signals, and shifts in cellular redox balance permeate the signalling network leading to cross-tolerance. The identification of specific ROS/antioxidative signatures leading a plant to different fates under stress is pivotal for identifying strategies to monitor and increase plant fitness in a changing environment. This review provides an update of the plant redox signalling network implicated in stress responses, in particular in cross-tolerance acquisition. The interplay between reactive oxygen species (ROS), ROS-derived signals, and antioxidative pathways is also discussed in terms of plant acclimation to stress in the short and long term |
---|---|
Beschreibung: | Date Completed 17.09.2019 Date Revised 17.09.2019 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/ery168 |