Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 25 vom: 02. Juni, Seite e1706480
Auteur principal: Kang, Boseok (Auteur)
Autres auteurs: Lee, Seong Kyu, Jung, Jaehyuck, Joe, Minwoong, Lee, Seon Baek, Kim, Jinsung, Lee, Changgu, Cho, Kilwon
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article E-skin durability graphene organic field-effect transistors organosilane
Description
Résumé:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics
Description:Date Completed 01.08.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201706480