First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. The...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physics reports. - 1990. - 632(2016) vom: 16. Mai, Seite 1-75
1. Verfasser: Mishchenko, Michael I (VerfasserIn)
Weitere Verfasser: Dlugach, Janna M, Yurkin, Maxim A, Bi, Lei, Cairns, Brian, Liu, Li, Panetta, R Lee, Travis, Larry D, Yang, Ping, Zakharova, Nadezhda T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Physics reports
Schlagworte:Journal Article Discrete random media Effective-medium approximation Electromagnetic scattering Radiative transfer Statistical electromagnetics Weak localization
LEADER 01000caa a22002652c 4500
001 NLM283057580
003 DE-627
005 20250223104258.0
007 cr uuu---uuuuu
008 231225s2016 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.physrep.2016.04.002  |2 doi 
028 5 2 |a pubmed25n0943.xml 
035 |a (DE-627)NLM283057580 
035 |a (NLM)29657355 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mishchenko, Michael I  |e verfasserin  |4 aut 
245 1 0 |a First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies 
650 4 |a Journal Article 
650 4 |a Discrete random media 
650 4 |a Effective-medium approximation 
650 4 |a Electromagnetic scattering 
650 4 |a Radiative transfer 
650 4 |a Statistical electromagnetics 
650 4 |a Weak localization 
700 1 |a Dlugach, Janna M  |e verfasserin  |4 aut 
700 1 |a Yurkin, Maxim A  |e verfasserin  |4 aut 
700 1 |a Bi, Lei  |e verfasserin  |4 aut 
700 1 |a Cairns, Brian  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Panetta, R Lee  |e verfasserin  |4 aut 
700 1 |a Travis, Larry D  |e verfasserin  |4 aut 
700 1 |a Yang, Ping  |e verfasserin  |4 aut 
700 1 |a Zakharova, Nadezhda T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physics reports  |d 1990  |g 632(2016) vom: 16. Mai, Seite 1-75  |w (DE-627)NLM098124315  |x 0370-1573  |7 nnas 
773 1 8 |g volume:632  |g year:2016  |g day:16  |g month:05  |g pages:1-75 
856 4 0 |u http://dx.doi.org/10.1016/j.physrep.2016.04.002  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 632  |j 2016  |b 16  |c 05  |h 1-75