Programmable Self-Locking Origami Mechanical Metamaterials

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 15 vom: 07. Apr., Seite e1706311
1. Verfasser: Fang, Hongbin (VerfasserIn)
Weitere Verfasser: Chu, Shih-Cheng A, Xia, Yutong, Wang, Kon-Well
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article degree-4 vertex origami mechanical metamaterials metastrucutres origami dynamics piecewise stiffness
LEADER 01000caa a22002652c 4500
001 NLM281702497
003 DE-627
005 20250223063156.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201706311  |2 doi 
028 5 2 |a pubmed25n0938.xml 
035 |a (DE-627)NLM281702497 
035 |a (NLM)29513374 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Hongbin  |e verfasserin  |4 aut 
245 1 0 |a Programmable Self-Locking Origami Mechanical Metamaterials 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Developing mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflat-foldable origami provides a new platform to achieve programmability via its intrinsic self-locking and reconfiguration capabilities. Working with the single-collinear degree-4 vertex origami tessellation, it is found that each unit cell can self-lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limiting-stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells' deformation modes through passive or active means, the n-layer metamaterial's stiffness is controllable among 2n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial's rich dynamic performance. These unique characteristics of self-locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties 
650 4 |a Journal Article 
650 4 |a degree-4 vertex origami 
650 4 |a mechanical metamaterials 
650 4 |a metastrucutres 
650 4 |a origami dynamics 
650 4 |a piecewise stiffness 
700 1 |a Chu, Shih-Cheng A  |e verfasserin  |4 aut 
700 1 |a Xia, Yutong  |e verfasserin  |4 aut 
700 1 |a Wang, Kon-Well  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 15 vom: 07. Apr., Seite e1706311  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:30  |g year:2018  |g number:15  |g day:07  |g month:04  |g pages:e1706311 
856 4 0 |u http://dx.doi.org/10.1002/adma.201706311  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 15  |b 07  |c 04  |h e1706311