Temporal Coherence-Based Deblurring Using Non-Uniform Motion Optimization

Non-uniform motion blur due to object movement or camera jitter is a common phenomenon in videos. However, the state-of-the-art video deblurring methods used to deal with this problem can introduce artifacts, and may sometimes fail to handle motion blur due to the movements of the object or the came...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 10 vom: 25. Okt., Seite 4991-5004
Auteur principal: Congbin Qiao (Auteur)
Autres auteurs: Lau, Rynson W H, Bin Sheng, Benxuan Zhang, Enhua Wu
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM274167956
003 DE-627
005 20250222010131.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2731206  |2 doi 
028 5 2 |a pubmed25n0913.xml 
035 |a (DE-627)NLM274167956 
035 |a (NLM)28742037 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Congbin Qiao  |e verfasserin  |4 aut 
245 1 0 |a Temporal Coherence-Based Deblurring Using Non-Uniform Motion Optimization 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Non-uniform motion blur due to object movement or camera jitter is a common phenomenon in videos. However, the state-of-the-art video deblurring methods used to deal with this problem can introduce artifacts, and may sometimes fail to handle motion blur due to the movements of the object or the camera. In this paper, we propose a non-uniform motion model to deblur video frames. The proposed method is based on superpixel matching in the video sequence to reconstruct sharp frames from blurry ones. To identify a suitable sharp superpixel to replace a blurry one, we enrich the search space with a non-uniform motion blur kernel, and use a generalized PatchMatch algorithm to handle rotation, scale, and blur differences in the matching step. Instead of using pixel-based or regular patch-based representation, we adopt a superpixel-based representation, and use color and motion to gather similar pixels. Our non-uniform motion blur kernels are estimated from the motion field of these superpixels, and our spatially varying motion model considers spatial and temporal coherence to find sharp superpixels. Experimental results showed that the proposed method can reconstruct sharp video frames from blurred frames caused by complex object and camera movements, and performs better than the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Lau, Rynson W H  |e verfasserin  |4 aut 
700 1 |a Bin Sheng  |e verfasserin  |4 aut 
700 1 |a Benxuan Zhang  |e verfasserin  |4 aut 
700 1 |a Enhua Wu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 10 vom: 25. Okt., Seite 4991-5004  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:10  |g day:25  |g month:10  |g pages:4991-5004 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2731206  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 10  |b 25  |c 10  |h 4991-5004