Relating Redox Properties of Polyvinylamine-g-TEMPO/Laccase Hydrogel Complexes to Cellulose Oxidation

The structure and electrochemical properties of adsorbed complexes based on mixtures of polyvinylamine-g-TEMPO (PVAm-T) and laccase were related to the ability of the adsorbed complexes to oxidize cellulose. PVAm-T10 with 10% of the amines bearing TEMPO moieties (i.e., DS = 10%), adsorbed onto gold...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 33(2017), 32 vom: 15. Aug., Seite 7854-7861
Auteur principal: Fu, Qiang (Auteur)
Autres auteurs: Sutherland, Alexander, Gustafsson, Emil, Ali, M Monsur, Soleymani, Leyla, Pelton, Robert
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:The structure and electrochemical properties of adsorbed complexes based on mixtures of polyvinylamine-g-TEMPO (PVAm-T) and laccase were related to the ability of the adsorbed complexes to oxidize cellulose. PVAm-T10 with 10% of the amines bearing TEMPO moieties (i.e., DS = 10%), adsorbed onto gold sulfonate EQCM-D sensor surfaces giving a hydrogel film that was 7 nm thick, 89% water, and encasing laccase (200 mM) and TEMPO moieties (33 mM). For DS values >10%, all of the TEMPOs in the hydrogel film were redox-active in that they could be oxidized by the electrode. With hydrogel layers made with lower-DS PVAm-Ts, only about half of the TEMPOs were redox-active; 10% DS appears to be a percolation threshold for complete TEMPO-to-TEMPO electron transport. In parallel experiments with hydrogel complexes adsorbed onto regenerated cellulose films, the aldehyde concentrations increased monotonically with the density of redox-active TEMPO moieties in the adsorbed hydrogel. The maximum density of aldehydes was 0.24 μmol/m2, about 10 times less than the theoretical concentration of primary hydroxyl groups exposed on crystalline cellulose surfaces. Previous work showed that PVAm-T/laccase complexes are effective adhesives between wet cellulose surfaces when the DS is >10%. This work supports the explanation that TEMPO-to-TEMPO electron transport is required for the generation of aldehydes necessary for wet adhesion to PVAm
Description:Date Completed 23.07.2018
Date Revised 23.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01460