Calibrating the prior distribution for a normal model with conjugate prior

For a normal model with a conjugate prior, we provide an in depth examination of the effects of the hyperparameters on the long-run frequentist properties of posterior point and interval estimates. Under an assumed sampling model for the data generating mechanism, we examine how hyperparameter value...

Description complète

Détails bibliographiques
Publié dans:Journal of statistical computation and simulation. - 1999. - 85(2014), 15 vom: 01., Seite 3108-3128
Auteur principal: Alber, Susan A (Auteur)
Autres auteurs: Lee, J Jack
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:Journal of statistical computation and simulation
Sujets:Journal Article Bayesian Model Hyperparameter Mean Squared Error Point and Interval Estimates Prior Specification
LEADER 01000caa a22002652c 4500
001 NLM273472062
003 DE-627
005 20250221220218.0
007 cr uuu---uuuuu
008 231225s2014 xx |||||o 00| ||eng c
024 7 |a 10.1080/00949655.2014.951855  |2 doi 
028 5 2 |a pubmed25n0911.xml 
035 |a (DE-627)NLM273472062 
035 |a (NLM)28670022 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alber, Susan A  |e verfasserin  |4 aut 
245 1 0 |a Calibrating the prior distribution for a normal model with conjugate prior 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For a normal model with a conjugate prior, we provide an in depth examination of the effects of the hyperparameters on the long-run frequentist properties of posterior point and interval estimates. Under an assumed sampling model for the data generating mechanism, we examine how hyperparameter values affect the mean squared error (MSE) of posterior means and the true coverage of credible intervals. We develop two types of hyperparameter optimality. MSE optimal hyperparameters minimize the MSE of posterior point estimates. Credible interval optimal hyperparameters result in credible intervals that have minimum length while still retaining nominal coverage. A poor choice of hyperparameters has a worse consequence on the credible interval coverage than on the MSE of posterior point estimates. We give an example to demonstrate how our results can be used to evaluate the potential consequences of hyperparameter choices 
650 4 |a Journal Article 
650 4 |a Bayesian Model 
650 4 |a Hyperparameter 
650 4 |a Mean Squared Error 
650 4 |a Point and Interval Estimates 
650 4 |a Prior Specification 
700 1 |a Lee, J Jack  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of statistical computation and simulation  |d 1999  |g 85(2014), 15 vom: 01., Seite 3108-3128  |w (DE-627)NLM098160486  |x 0094-9655  |7 nnas 
773 1 8 |g volume:85  |g year:2014  |g number:15  |g day:01  |g pages:3108-3128 
856 4 0 |u http://dx.doi.org/10.1080/00949655.2014.951855  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 85  |j 2014  |e 15  |b 01  |h 3108-3128