A Fast Ellipse Detector Using Projective Invariant Pruning

Detecting elliptical objects from an image is a central task in robot navigation and industrial diagnosis, where the detection time is always a critical issue. Existing methods are hardly applicable to these real-time scenarios of limited hardware resource due to the huge number of fragment candidat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 8 vom: 20. Aug., Seite 3665-3679
1. Verfasser: Jia, Qi (VerfasserIn)
Weitere Verfasser: Fan, Xin, Luo, Zhongxuan, Song, Lianbo, Qiu, Tie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM272167053
003 DE-627
005 20231224234305.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2704660  |2 doi 
028 5 2 |a pubmed24n0907.xml 
035 |a (DE-627)NLM272167053 
035 |a (NLM)28534774 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Qi  |e verfasserin  |4 aut 
245 1 2 |a A Fast Ellipse Detector Using Projective Invariant Pruning 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Detecting elliptical objects from an image is a central task in robot navigation and industrial diagnosis, where the detection time is always a critical issue. Existing methods are hardly applicable to these real-time scenarios of limited hardware resource due to the huge number of fragment candidates (edges or arcs) for fitting ellipse equations. In this paper, we present a fast algorithm detecting ellipses with high accuracy. The algorithm leverages a newly developed projective invariant to significantly prune the undesired candidates and to pick out elliptical ones. The invariant is able to reflect the intrinsic geometry of a planar curve, giving the value of -1 on any three collinear points and +1 for any six points on an ellipse. Thus, we apply the pruning and picking by simply comparing these binary values. Moreover, the calculation of the invariant only involves the determinant of a 3×3 matrix. Extensive experiments on three challenging data sets with 648 images demonstrate that our detector runs 20%-50% faster than the state-of-the-art algorithms with the comparable or higher precision 
650 4 |a Journal Article 
700 1 |a Fan, Xin  |e verfasserin  |4 aut 
700 1 |a Luo, Zhongxuan  |e verfasserin  |4 aut 
700 1 |a Song, Lianbo  |e verfasserin  |4 aut 
700 1 |a Qiu, Tie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 8 vom: 20. Aug., Seite 3665-3679  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:8  |g day:20  |g month:08  |g pages:3665-3679 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2704660  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 8  |b 20  |c 08  |h 3665-3679